Physics 428: Imaging Detectors for Medical and Health Sciences

- Lead Instructor: Paul Kinahan
- Lectures: Tuesday 6:30-8:50 PM, PAA Room 110
- Objective:

Provide an introduction to the specific imaging methods of x-ray, gamma-ray, CT, SPECT, PET, and PET/CT imaging

- Text: There is no required textbook for this course
- Prerequisite: At least undergraduate freshmanlevel physics or chemistry, and some advanced coursework typical of engineering or science majors; calculus, algebra and trigonometry, and preferably PHYS 575 and 576
- Grading: Midterm exam. Final paper and class presentation. Class participation in seminars and discussions. Class assignments.

Lecture Sequence

	Date	Instr.	Торіс
1	March 29	РК	Overview: Imaging equation, inverse problem
2	April 5	РК	2D-LSI imaging systems, X-ray physics: formation and interaction
3	April 12	WH	X-ray detection and imaging systems
4	April 19	WH	X-ray computed tomography (CT) systems
5	April 26	WH	X-ray CT part 2. Contrast Agents
6	May 3	РК	Image reconstruction and image quality
7	May 10	РК	Nuclear decay schemes and isotopes
8	May 17	РК	Gamma cameras: components and systems
9	May 24	РК	Tomography in molecular imaging: SPECT scanners
10	May 31	РК	Positron emission tomography (PET) and hybrid PET/CT scanners

* draft schedule

Course notes

- Course site: http://courses.washington.edu/phys428/
- Online lecture site: <u>http://uweoconnect.extn.washington.edu/phys428/</u>
- Class email: Multi_phys428a_sp16@uw.edu
- All students must take the midterm exam during the scheduled time
- No course incompletes will be given, except per UW regulations

Class List

Last	First
Board	Erin
McGann	Rick
Meshesha	Atnatiwos
Mullen	Emma Rae
Provencher	Per
Slack	Johnathan
Tan	Farrah
Brady	Lynda
Chung	Steven
Fong	Nick
Garcia	Xavier
Lad	Mihir
Vogeley	Betty
Xie	Stanley
Lam	Dennis

Assignment for next week

- Read two papers on the class website
 - The Role of Biomedical Imaging in Future Healthcare Scenarios: A report by David S. Lester, Director Pfizer Human Health Technologies, 2006
 - Weissleder and Nahrendorf "Advancing biomedical imaging", P Natl Acad Sci Usa, vol. 112, no. 47, pp. 14424–14428, Nov. 2015.
- 5 points: Write a one page summary of the ideas in both papers. If it helps, think of the categories the papers mention and then their conclusions statements in each
- 5 points: Pose two questions that occur to you about what you don't understand from writing
- Due: By start of class 6:30 PM April 5th (2016)

Images

Types of Images: 2D Images

Ceci n'est pas une pipe.

René Magritte The Treachery of Images 1928

Types of Images: Projection Imaging

Types of Images: Tomography Imaging

Two Types of Tomography

'Tomo' + 'graphy' = Greek: 'slice' + 'picture'

CT: Transmission

PET: Emission

Major Modalities

- X-ray Radiography and Computed Tomography (CT)
- Nuclear Medicine (SPECT, PET)
- Ultrasound
- Magnetic Resonance Imaging
- Optical Tomography

There are many other types of biomedical imaging Of interest are hybrid imaging methods

- PET/CT, PET/MR
- Photoacoustic

Projection X-ray Imaging

- Image records transmission of x-rays through object $I_d(x,y) = I_0 \exp(-\int \mu(x,y,z) dl)$
- The integral is a line-integral or a "projection" through obj
- μ(x,y,z) x-ray attenuation coefficient, a tissue property, a function of electron density, atomic #, ...

Physics of photon imaging

The Electromagnetic Spectrum

what is Transmission through 1 cm of tissue?

X-ray Imaging Projection vs Tomographic

Cross-sectional Image

Projection Image

X-ray Computed Tomography

- Uses x-rays, but exposure is limited to a slice (or "a couple of" slices) by a collimator
- Source and detector rotate around object projections from many angles
- The desired image, $I(x,y) = \mu(x,y,z_0)$, is computed from the projections

X-ray Computed Tomography

PET/CT Scanner

All 3 (couch, CT and PET) must be in accurate alignment

Commercial/Clinical PET/CT Scanner

Molecular imaging using PET/CT is a powerful tool for detection, diagnosis, and staging of cancer

Function+Anatomy

CT Image of Anatomy

PET Image of Function

Ultrasound Imaging

High-Resolution

Color Doppler

MRI

neuro function

Medical Imaging

- Visualization of internal organs, tissue, organ function, bio-physiological status, etc.
 - Pathologies and diseases often have different imaging characteristics from normal states, either static (e.g. anatomy) or dynamic (functional)
 - Often pathologies are undetectable in one one approach and visible in another
- Image: a 2D signal f(x,y) or 3D signal f(x,y,z)
- Imaging provides localized information, unlike global or systemic diagnostics
 - i.e. where is the disease?
 - imaging can be more sensitive by providing a localized measurement

Common themes in biomedical imaging

- Where does the signal come from?
 - This is modality specific
 - determines the quantity displayed in images
- Contrast agents
- The imaging equation: What is the mathematical description of the acquisition of the raw data?
- The inverse problem: How do we form an image from the raw data?
- Signal to noise ratio
- Safety
- Cost versus usefulness
- Clinical versus research applications
- Diagnosis versus therapy

Lung images with different modalities

What do the image values represent?

0% (0.00) b

US

Contrast / Contrast Agents / Tracers

- To image inside the body we need something to provide a signal (i.e. a difference or contrast) that we can measure
- Contrast can be *intrinsic* or *extrinsic*
 - Intrinsic: Already present, e.g. tissue density differences seen with x-ray imaging
 - Extrinsic: A <u>contrast agent</u> put into a patient (ingested, injected, etc.) to provide a signal. Acts as a signal amplification.
- Targeted contrast agents use different mechanisms (e.g. antibodies) to attach to specific objects or processes
- Needed amount of contrast agent is a critical parameter
 - Ideally, a contrast agent does not alter anything (i.e. a *tracer*)
 - Safety and toxicity are critical parameters

Contrast / Contrast Agents / Tracers

Modality	Intrinsic (already present)	Extrinsic (added)
Nuclear, SPECT, PET	None	Radioisotope-labeled tracers (radiotracers)
x-ray, CT	Photon absorption by Compton scattering (density) and photoelectric absorption	lodine, barium to enhance photon absorption
Ultrasound	Vibrational wave reflectance due to tissues differences	Micro-bubbles to enhance reflectance
MRI	Radiofrequency (RF) signals generated by stimulated oscillating nuclear magnetic moments. RF signal depends on density and magnetic relaxation time differences in local microenviroment	chelated gadolinium and superparamagnetic iron oxide (SPIO) particles to alter magnetic relaxation times
Optical tomography	Changes in scattering, absorption, polarization. Also time- or frequency-dependent modulation of amplitude, phase, or frequency	microspheres, absorbing dyes, plasmon-resonant or magnetomotive nanoparticles

Contrast Agent Example

X-ray imaging system

- The attenuation of x-rays in the body depends on material and energy
- We can enhance attenuation by using 'contrast agents', typically iodine (injected) or barium (ingested)

Note blockage in the ureter stopping flow from the kidney to the bladder

X-ray physics: Imaging equation

- Attenuation µ of x-rays depends on material (thus position of material) and energy
- From x-ray tubes there is a weighted distribution of energies *S*
- X-ray imaging equation: Detector signal *I* at position *x*

$$I(x) = \int_{E=0}^{E_{\text{max}}} E' S_0(E') e^{-\int_0^x \mu(x',E') dx'} dE'$$

what we want to know

what we measure

beam intensity along a line with $\mu = \mu (x)$ $S_0(E)$ source (x-ray tube) x

Biomedical Imaging Systems

• To estimate an image of property of interest, e.g. $\mu(x,y)$, from the raw data, we have to solve the inverse problem

Imaging Systems + Contrast Agents

• The use of a contrast agent can amplify the signal of interest, e.g. μ for iodine is much higher than μ for tissue.

Imaging Diagnostics vs. Therapy

- What is the relation between diagnostics and therapy?
- What are the major disease classes?
- How can imaging interact with therapy?

What is the relation between diagnostics and therapy?

- A diagnosis may (we hope) help select of guide therapy when we don't have enough information
- Therapy should be making a change, diagnosis should not make a change
- Diagnostic procedures can provide feedback on therapeutic effectiveness
- Some tools for diagnosis can be used for therapy and vice versa (or can occur at the same time)
- Cost / resources / time are more readily used for therapy than diagnosis